Do Convolutional Neural Networks act as Compositional Nearest Neighbors?
نویسندگان
چکیده
We present a simple approach based on pixel-wise nearest neighbors to understand and interpret the internal operations of state-of-the-art neural networks for pixel-level tasks. Specifically, we aim to understand the synthesis and prediction mechanisms of state-of-the-art convolutional neural networks for pixel-level tasks. To this end, we primarily analyze the synthesis process of generative models and the prediction mechanism of discriminative models. The main hypothesis of this work is that convolutional neural networks for pixel-level tasks learn a fast compositional nearest neighbor synthesis or prediction function. Our experiments on semantic segmentation and image-to-image translation show qualitative and quantitative evidence supporting this hypothesis.
منابع مشابه
Comparison and evaluation of the performance of data-driven models for estimating suspended sediment downstream of Doroodzan Dam
Dams control most of the sediment entering the reservoir by creating static environments. However, sediment leaving the dam depends on various factors such as dam management method, inlet sediment, water height in the reservoir, the shape of the reservoir, and discharge flow. In this research, the amount of suspended sediment of Doroodzan Dam based on a statistical period of 25 years has been i...
متن کاملDeep Recurrent Neural Networks for Human Activity Recognition
Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convol...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملLearning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction
This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstra...
متن کاملUniversity of Groningen Using Deep Convolutional Neural Networks to Predict Goal-Scoring Opportunities in Soccer
Deep learning approaches have successfully been applied to several image recognition tasks, such as face, object, animal and plant classification. However, almost no research has examined on how to use the field of machine learning to predict goal-scoring opportunities in soccer from position data. In this paper, we propose the use of deep convolutional neural networks (DCNNs) for the above sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.10683 شماره
صفحات -
تاریخ انتشار 2017